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The qualitative Dingle formula for the conductivity of thick wires in zero magnetic field is
derived by the Chambers path-integral technique for arbitrary cross-sectional geometry.
The result is extended to the case of a large magnetic field transverse to the wire axis. Appli-
cation is made to the case of thin films in the Sondheimer geometry and to the case of circular
wires. Comparison is made to experiments on K wires.

I. INTRODUCTION

Dingle' has studied the problem of calculating the
conductivity of an infinitely long wire of circular
cross section, taking into account the boundary
scattering of the electrons.

As a preliminary to approaching the problem in
detail, he gives a qualitative argument suggesting
that for thick wires of arbitrary cross section in
zero magnetic field one has

o0=0y(1 =CAzP/A) , (1)

where C is a constant, A is the mean free path at
the,Fermi surface, P is the perimeter of the wire,
and A is the cross-sectional area. Dingle notes
that the result of Fuchs’s? treatment of a thin film
may be put into this form when Ay is small com-
pared to the film thickness, and that for complete-
ly diffuse boundary scattering the constant C = f.
Using this value of C in Eq. (1) for the case of a
circular wire of radius R, Dingle suggests that
one should expect

o=0,(1 —3xz/8R) (2)

for the case A\ <R, He then proceeds to obtain ex-
pressions by the Boltzmann-equation approach
which do indeed result in Eq. (2) for the thick-wire
case.

This paper derives Eq. (1) utilizing the Cham-
bers path-integral approach, 3 demonstrating
that the value C=gk is a result of the assumptions
of a spherical Fermi surface and diffuse boundary
scattering. The problem is then extended to dis-
cuss the high transverse magnetic field case for
wires of arbitrary cross section, and an expression
quite similar to Eq. (1) is found to apply to the
transverse magnetoresistivity p,;. The Hall re-
sistivity is shown to tend to the bulk value for high
magnetic field.

II. THEORY

A. H=0, E uniform

Chambers’s kinetic formulation? for the perturba-

4

tion f *? to the equilibrium Fermi distribution f

gives

o Lt
FOE D=L f B, 7, 1) ¥(t)

d€ t-ot
Xe-(t-t')/‘fdtl, (3)

where ¢ is the energy, E is the electric field, V is
the velocity, 7 is the relaxation time, and Af is
the largest time interval in the past that was phys-
ically possible for electrons to have diffusely scat-
tered onto a path leading to the phase point (¥, V)

at time t'=¢. For bulk samples Af is essentially
infinite, while for finite samples Af is limited by
the proximity of the boundaries, if boundary scat-
tering is diffuse. The velocity V(#’) must be found
by solving the classical equation of motion for an
electron in the given force field (ignoring collisions),
subject to the boundary conditions that at ¢'=¢,
T(¢')=T, and V(¢')=V. The solution in this case is

v(t') = (eB/m)(t-t)+7V . (4)

Substitution of Eq. (4) into Eq. (3) gives two
terms, one of which involves E%, This term may
be neglected if the velocity gained during the in-
terval Afis small compared to ¥, the velocity of
arrival at *. This leads to Ohmic resistivity.
Making this approximation and integrating Eq. (3)
under the assumptions that 7 is a constant! and E
is uniform and time independent gives

FOE, 6)=e%€m—) E- V(1 -e 27, (5)
For an infinite sample At is infinite such that

fétzfed—f; E- V7, )

FOED=0-e*NFok . ™

It is desired to calculate £ '’ at a point in the
neighborhood (within a few mean free paths) of the
surface. Referring to Fig. 1, let C be the point
of interest. Construct a tangent plane to the bound-
ary at the nearest point (D) to C. Define g to be
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FIG. 1. Local coordinates associated with a point C
at which the conductivity is to be calculated for zero mag-
netic field.

the perpendicular distance from the tangent plane
to point C. An electron diffusely scattering from
point A on the boundary travels a distance AC to
arrive at C with velocity vector inclined at angle 6
to the inwardly directed surface normal vector n.
Since the velocity gained from the electric field is
assumed small compared to the velocity of arrival
at C,

At=(AC/v7)T=(AC/N)T . (8)

Now assume that R,,, the minimum value of the
radius of curvature of the boundary, is much larger
than X for all electrons:

Rm >> )\FEvFT . (9)

This is the “thick-wire” approximation. For this
case AC may be replaced by BC except when AC is
large compared to A. But for AC >\, A>T so
that the exponential may be neglected. Thus for
thick wires

At=(BC/N7=q7/\cosb . (10)
Then for a point such as C in Fig. 1 characterized

by a particular value of ¢

g, 0<3m)=e(df ©/de) E- V(L - 0/*>) ,
(11)
Equation (11) gives the contribution to f *’ from
all electrons which have the associated angle
#<$m Of those electrons which arrive at C with
6>3m, essentially all have had their last collision
'in the volume of the sample. These contribute
B(0>im) tof“ at C. Therefore,

f g, V)=f Vg, 023m)
or (12)
F g, V)= fauhlo>3m) .
Note that
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FOO<sm=fmudl0 <3 =f k(0 <3m) e/,
(13)
such that f (9 < 37) vanishes for g=0. Thus the
Fuchs? boundary condition is satisfied. As indicated

in Fig. 1, choose local coordinates such that z is
along the inward normal, v is in the tangent plane,

and x is along the length of the wire. The local
current density J(g) is
I(g)=(ar®) [f Vg, ¥) (- e¥) d% (19)

or

I =) [, (oD uh Ot &k

- (ar%)™ sz)o (—ef)f a0 <im)e /o0 gp
+(4ﬂ3)'1fk < (—e?)fa)(6>4mde . (15)
z

Combining the first and last terms of Eq. (15) gives

J(q)= jbm + (e?7/47%)

(0)
xf Fv—(dfd )e-a/w cosedsk. E . (16)
Rg20 €

Taking the highly degenerate case where df *’/de
= - 6(¢ —€p) and using d°k = (7)™ dS(¢) de, where
dS is an element of area on the energy surface

¢ =1*k%/2m, one has

8(q)= 8" = (Prop/4nh) [, Tidye™ /"% e p)

(17a)
or
(q) = 6™ = (30,/4m) fe mzﬁke"'/ *F %0 5in6 do dep
(170)
where
op=neT/m , (17¢)
1,=sing cos¢i + sind sing j + cosk . (17d)

Writing out the dyad i,:lk in tensor form and inte-
grating each element over ¢ gives

3 T/2
5(q) = Ghutk _ :Q/ e~ /A cosb
0

fsin®0 0 0
x{ 0 sin% 0 de . (18)

0 0 2cos? sing

Experimentally one is interested in the average of
the local current density over the cross section of
the wire, since one measures the cross-sectional
area A and the current / flowing through it:

(Jy=1/A=A" [ [Faa, (192)
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dA = f(q)dq

f(O)=P

FIG. 2. Cross section of wire showing infinitesimal area
generated by incrementing g to g +dgq.

(5y=(6)E=A"[ [6dAE, (19b)

(6y=A"[ [6aA . (19c)

To carry out the above areal averaging of & it is
necessary to express 0(q) at each point ¢ in a com-
mon laboratory system of coordinates. As one
moves around the perimeter of the wire, the local
coordinates, as defined in Fig. 1, rotate about the
x axis such that on transforming each &(q) to a lab
system chosen with its x axis down the length of the
wire, oy,(q) is unchanged. Therefore (oy;) may be
computed by using Eqs. (18) and (19¢), directly.
Also since the result of transforming a diagonal
tensor such as Eq. (19) by a rotation about x leaves
the tensor x diagonal, one has

pu=Co)"", (20)

where py; is the experimentally measured longitu-
dinal resistivity, and

v/2
(o.ll):(’{)iulk _3_Zg'/’ (e-a/AF coso>sin89 do .
0
(21)

Consider contours of constant ¢ as indicated in
Fig. 2. The differential area dA may be written
as

dA=f(q)dq , (22)

where f(gq) is seen to be the perimeter of the con-
tour characterized by a value of q. For regions
where ¢< R, f(q) is slowly varying and may be
replaced by f(0). Then one has

<e-a/lF cas0>=A-f(o) foR"' e~/ cosodq , (23)

where, since \p<< R, the integrand is essentially
zero for ¢> K,,. Integration gives as an excellent
approximation

(e~ reosty =) Pcosg/A . (24)
Substitution of Eq. (24) into Eq. (21) gives, after
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integration over 6,

0= (031 )= (1 = 3xzP/16A)0, (25)
or

pu=(1+3xzP/16A)p, , (26)

where p,=1/0,, and Eq. (26) is obtained by taking
the leading term in a binomial expansion of the in-
verse of Eq. (25). Equation (25) is the result
Dingle1 suggested by qualitative argument and which
he derived for the case of a thick circular wire.

B. ﬁ Transverse, E’ Uniform

Consider the situation where the thick wire is
placed in a uniform magnetic field directed per-
pendicularly to the axis of the wire. The velocity
¥(t') is to be found by solving

FxH. X))

The Ohmic aBproximation is obtained by neglecting
the term —¢E in Eq. (27) in order to avoid quad-
ratic dependence on E of the integrand of Eq. (3).
The solution may be written

V()= -t (28a)
. 0 -Hy H
o=_cely o H (28D)
“me mel 3. R A

-H, H, 0

Then substitution of Eq. (28a) into Eq. (3) gives

) ot .
ar / e(w+1/r)(t'-t)dt/;, E
’

f‘“(i",?):e

de t- At (29)
70 D= L) @y

X[1—e @ ThotG | (30)

For infinite samples Af goes to infinity and there-
fore

d ) R T
fé.‘,l’k=e<£€ )(w+f")"v- E (31)
and
FOFD=[1-em @l (32)

Now restrict the problem to deal only with the case
when H is large enough that the cyclotron radius
R,<Xp. Referring to Fig. 3 consider an electron
arriving at point C after scattering from the sur-
face at point A. Draw a line from C to the boundary
parallel to H, and define the distance CD=gq. The
transit time Af from A to C satisfies

vcosh At - g< 2R, tany , (33)

such that as H tends toward infinity one has
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At=gq/vcosh , (34)

except for a negligible region near limiting points
of the boundary where H is tangent to the wire
(=3m). The above discussion resulting in Eq.
(34) is valid only for electrons with cos6 >0, that
is, <37 Then within this high-field approxima-
tion

F g, 623m)=(1 - S T/ vemty () (g< A

(35)

Note that £ “(g, 6 < 47) vanishes for ¢=0 so that
the Fuchs? boundary conditions are satisfied.

Electrons arriving at a point ¢ with 6 > 37 have
either had their last collision in the volume of the

J
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sample, or are on reentrant trajectories originating
at some point on the boundary. Since it is assumed
that R, > ), reentrant trajectories are probable only
near the limiting points of the boundary where
d=~3m. These contributions become negligible as

H tends toward infinity. Then for large H

Mg, ) =f"Nq, 0 <3m)
or (36)
f (g V)= fadl6>5m) .

Choose local coordinates such that g is measured
;pward along the z axis parallel or antiparallel to
H (p is thus restricted — 37<y<3m). The local
current density is calculated as

)
5(q)= (47:3)-*/ FO) (0 <5m) () % — (47 K— ¥ df;e ) (G477
kRz20

kg2 0

xe" @+ 11 )q/vcose";:,dsk . 'E’ + (4,”3)-1/ (- ev)fl(nl:l)k(e > %ﬂ) ade .
ke<O

Combining the first and last integrals above gives
2 5
> e df o\, ~
J(@) = Tpurx "‘Z‘Ff [(_é%)v(w +77)
kg0

Xe-(:ed» T-I)G/UCQSO;]d3k. E , (38)

Using dfy/de= - b(c - €;), d*k=(hv)™dS(e)de, and
the identity 2(9,9,b) = [2(Q,5)]Q,, where tilde means
“transpose,” Eq. (38) becomes

a(q )= a‘bulk

FIG. 3. Local coordinates associated with a point C
at which the conductivity is to be calculated for large
transverse magnetic field.

(37)

3 T oG- . N
_ Z,; lk e-(w+T l)a/vF cosé lkslne de d¢o‘bulk
kg>0 ’
(39)
where
1 wT
. 1+ (1) " 1+(wr)
Opuik = Oo| ot 1 (40a)
1+ (wT)? 1+ (wr)?
or
pute= Oo(l = @7)! (40b)
in a two-dimensional representation. In a three-

dimensional representation all other elements are
zero with the exception of ¢83'* which is of no in-
terest here. Equation (40a) gives &, for all

field strengths, but is of this form only for H along
the + z axis. [Equation (40b) is valid for arbitrary
coordinates.| The tensor &+ 7! has eigenvalues and

eigenvectors

X =1"-iw, |X1>=71—§<2> (41a)
K=rteie, X (5 - (41v)

The general expression for a function of a matrix
gM) =31 X,)g(X,)(X,| gives

Bl cosaw -sinaw
a(b+T )=ea/‘r( ) , (42)

e .
simaw Ccosaw

where o= -gq/vpcosf. Using Eq. (42) to write
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FIG. 4. Local coordinates for regions where i °ﬁz 0
and i *H <0.

out the dyad in the integrand of Eq. (39) and inte-
grating over ¢ gives

T/2
a.(q)za_bulk_?_ e-a/)»p cosé
4
0

(cosaw sinaw

. ) sin’ d6 . (43)
-~ SIn@¢w COSaw

It is now necessary to average Eq. (43) over the
cross section of the wire. Consider Fig. 4. Divide
the, perimeter of the wire into regions where
n-H>0andn- H<0. Equation (43) is directly
applicable to all points having associated inward
normal such that n. _ﬁzo, since H was chosen along
the z axis, but for points for which n. H<O0 the z
axis is antiparallel to H. Equation (43) gives the
correct result for such a coordinate system if the
sign of w is changed. However, the coordinate
system in which this new &(g) is valid must be ro-
tated 180° about the x axis before averaging is
carried out. This changing of the sign of w in Eq.
(43) followed by a rotation of 180° merely gives
Eq. (43) again. Therefore, one may proceed to
average the integrand of Eq. (43), and the result
is valid for the coordinate system with H directed
along the + z axis. Consider

(e~ 9/ ¥ cosqw)=A" [ [e /P cosawdia ,

(44a)
@A = dP(q) dg cosi(q) , (44Dp)

where, as indicated in Fig. 4, dP(g) is an element
of perimeter of a ¢g=constant contour. Define

J cosylg) dP(q) = P(g){cosi(q)) , (45)

so that (cosiy(q)) is a perimeter average of cosy
around a particular g contour. Note that ) has been
previously restricted to —37<$<37. Then one has

(e o5 )=A"t foR"'P(q)

X( cosm(q)) e F *%8 cos(aw) dg . (46)
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Since for Ay <<R,, P(q) and (cosy(q)) are slowly
varying functions of ¢, one may factor them out-
side of the integral with their ¢=0 values and re-
place R, by «©, yielding
(e~ 4/ F 9% co5q0 ) = P(0)

%x{cos(0))» pcoso/A(wT)?, (47)
where w7>1 has been used. Similarly
("4 F 80 ginaw) = — P(0) (cosyp(0)) xpcosb/AwT .

(48)

Then one has, after integration of the averaged
Eq. (43) over 6,

3P(0)(cosp(0) ) p
16A (wT)?

1 —wr\.
x </u'r T )am“ . (49)
In the high-field limit wr>1, Eq. (40a) becomes

. ) 1 -—-wTt
Gbuxk-W<wT 1 ) (50)

6=(5(q) )= Fpurx -

Using Eq. (50) in Eq. (49) and keeping lowest-order
terms in (w7)™ gives

o1 = (1+8)og/(w7)?= (1+6)ofy™ (51a)
015= 003 = — 0/ wT , (51b)
pi=01+8)pl%=(1+8)p,, (51c)
P21 = Pt = = powT (51d)

5=31,P(cosih)/16A . (51e)

III. DISCUSSION

Equations (25) and (26) give the results obtained
in the zero-magnetic-field case in agreement with
Dingle’s! argument. This result may be interpreted
qualitatively as indicated in Fig. 5. Although there
is an exponential change in the conductivity as one
moves from the boundary into the volume of the
material, imagine the area A divided into a skin

FIG. 5. In zero magnetic field one may visualize a
skin region of depth Ag in which the conductivity is re-
duced below the bulk value associated with the interior of
the wire.
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FIG. 6. In large transverse magnetic field the skin
region is of depth Ar measured parallel to the magnetic
field lines.

region of depth )z and conductivity o, — Ao, while
the interior region of area A — AA is characterized
by 0p. Then, since AA=2zP for Az < K,, (thick
wires),

_ 0o(A = AA) + (0g — A0)AA

(o) " (52a)
=oo(l —i—:’ %’) , (52b)

where one might expect Ag/c, to be characteristic
of the Fermi surface and type of boundary scatter-
ing. This is essentially Dingle’s1 argument. Note,
however, that the conductivity is a symmetric ten-
sor with the length of the wire as one principal
axis, and the other principal directions are dictated
by the specific geometry under consideration. As
indicated in Sec. II, only 0,, may be found by the
Dingle method. Figure 6 may be used to interpret
Eq. (51) for the transverse-magnetic-field case in
a similar manner. Here one has a skin of variable
depth. At any point on the surface, the skin depth
measured parallel (or antiparallel) to H is A, but
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measured along the inward normal line it is
Xpcosy, where P is the angle — 37 < < 37 between
the inward surface normal n and the magnetic field
lines.

For the case of a circular wire of radius K

P/A=2/R, {cosp)=2/m, (53)
such that at zero magnetic field

011=0o(1-32/8R) (H=0), (54)
while at high field Eqs. (51) give

1+3xz/47R
011= 0y (le; (wr>1), (55a)
P11=Po (1 +32z/47R)  (wT>1), (55b)
P21 = Poat¥ = = powT (wr>1). (55¢)

Mackey, Deering, and Sybert® have treated the
case of a circular wire in a transverse magnetic
field for wr>>1. In that paper emphasis was upon
the oscillatory phenomena which occur for 2,3 R.
Their high-field expressions may be expanded for
the case \p < R to obtain precisely the results
given above. Sondheimer® has treated the case of
an infinite thin film with magnetic field perpendicu-
lar to the plane of the film. He finds that for thick
films the zero-field and high-field saturation values
of p,; are identical, contrary to the case of the cir-
cular wire described above. Comparison of Egs.
(26) and (51) show why this is to be expected:

(cosy )=1 for this exceptional geometry.

Babisken and Siebenmann’ have recently studied
saturation effects in the magnetoresistance of po-
tassium. Using a 1.0-mm-diam wire at 1.4 °K,
they have observed the decrease in p,; between
H=0 and H= (their saturation occurs at about 5
kG) due to boundary-scattering effects. This de-
crease agrees with that predicted by Egs. (26)
and (55b) to about 5%.
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